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AbItnc:t-The thermoelastic problem of a fiat crack of infinite length and constant finite width between
bonded dissimilar anisotropic materials is examined. The stress singularities at the crack tips are obtained
and compared with those for the corresponding elastic crack problem.

1. INTRODUCTION
Over recent years a number of generalised plane thermoelastic boundary value problems have
been solved for anisotropic materials. Thus, e.g. Clements[l], Tauchert and Akoz[2], Clements
and Toy[3], Atkinson and Clements [4] and Clements and Tauchert [5] have successfully
employed integral transform techniques in order to solve various thermoelastic contact, crack
and slab problems for anisotropic media. So far complex variable techniques have apparently
not been used for the solution of thermoelastic problems involving general anisotropy. Since in
many cases the problems which can be solved using integral transforms can also be solved by
complex variable methods it seems of little importance which of the two procedures is used.
However there are certain problems which only readily yield to one or other of the two
techniques. For example the slab problems considered in Tauchert and Akoz[2] and Clements
and Tauchert[5] are much more easily solved by employing integral transforms while problems
involving cracks between dissimilar media are extremely difficult to solve by using transform
techniques. In fact the thermoelastic problem associated with a crack between dissimilar media
has not so far been solved. Thus the purpose of the present paper is to first set up the necessary
expressions for the temperature, heat flux, displacement and stress in terms of arbitrary analytic
functions and then to use these representations to solve for the flux and stress fields round a
crack between dissimilar anisotropic media. This problem is of some importance since layered
anisotropic composites may contain crack like flows along a bonded interface and the present
analysis could be used to examine the nature of the thermally induced stress field in the vicinity
of such a crack.

2. STATEMENT OF THE PROBLEM

Taking Cartesian coordinates Xh X2' X3 and assume the two dissimilar anisotropic materials
occupy the regions X2> 0 and X2 < 0 which will be denoted by Land R respectively. The
materials are assumed to be bonded at all points of the interface X2 =0 except those lying in the
region IXII.e;; a, - 00 < X3 < 00 where there is a crack. On the two faces of the crack equal and
opposite heat fluxes and tractions are specified. It is required to find the temperature, flux,
displacement and stress fields in the bonded material.

If the temperature, heat flux, displacement and stress in the regions Land R are denoted by
r L, - pL, u/, ufr and rR

, - pR, Uk
R

, uff respectively then the following conditions must be
satisfied on X2 = 0:

pL = - !(XI) on X2 = 0+ for IXII < a,

pR = - !(XI) on X2 = 0- for IXII < a,

u~ = - Pi (XI) on X2 = 0+ for Ix)1 < a,

O'~ = - Pi(XI) on X2 = 0- for IXII < a,
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(2.1)

(2.2)

(2.3)

(2.4)
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and
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u/ = u/ on X2 = 0 for Ixd > a,
T L = TR on X2 =0 for Ixd> a,

pL=pR on X2=O for !x11>a,
a~ = a~ on X2 = 0 for Ixd> a.

(2.5)

(2.6)

(2.7)

(2.8)

where {(Xl) is the given heat flux and Pi(XI) the given tractions over the crack faces.

3. FUNDAMENTAL EQUATIONS

Consider a homogeneous anisotropic elastic solid in which the displacement, stress and
temperature fields are independent of the Cartesian coordinate X3' The temperature distribution
T(Xh x:z) in the material satisfies the heat conduction equation

(3.1)

where Alj = Aji are the coefficients of heat conduction and the repeated suffix summation
convention (summing from 1 to 3 for Latin suffices only) has been used. The general solutionto
(3.1) in terms of an arbitrary analytic function X is (see Clements[l])

T(XIo x:z) = X(z') + Hz') (3.2)

where the bar denotes the complex conjugate and z' = x I + rX2 where r is the root with positive
imaginary part of the quadratic equation

(3.3)

The stress aij induced in the material by the temperature distribution (3.2) is related to the
elastic displacements Uk by the equations

(3.4)

where Cljkl are the elastic constants and f3ij are the stress-temperature coefficients. The stresses
alj given by (3.4) must satisfy the equilibrium equations aajjl aXj and hence

(3.5)

Since T is given by (3.2) we try for a solution to (3.5) in the form

where the Ck are constants and

</J'(z) = x(z).

The displacement (3.6) will be a solution to (3.5) if

where

(3.6)

(3.7)

(3.8)

(3.9)
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(3.10)

Equations (3.8) serves to determine the constants Ck•

In addition to the displacement which is given by (3.6) we may add any displacement which is a
solution to the equation

Solutions to this homogeneous system may be written in the form (see Clements[6])

Uk = ~ Akao/.,(z.,) +~ Ak.,tfra(.ia)
a .,

(3.11)

(3.12)

where the sum is from 1 to 3, the !/Ja(z) are arbitrary analytic functions and Za ;:: Xl +PaXz where
Ph Pz, P3 are the roots with positive imaginary part of the sextic

(3.13)

Also the Aka are the solutions of the equations

(3.14)

From (3.6) and (3.12) the displacement may now be written in the form

(3.15)
a a

Hence, from (3.4), (3.15), (3.2) and (3.7) the stress may be written in the form

0'11 =~ ~iao/~(za) +~ iilatfr~(Za) +(Nil - f3ij)q,'(Z') +(Nil - (311)~'(Z') (3.16)
a a

where the primes on the analytic functions indicate differentiation with respect to the argument
in question and .

Lila = (Cjikt +PaCjikz)Aka

Njj = (Cjjkl +TCjjdCk•

(3.17)

(3.18)

Various properties of the constants occurring in (3.15) and (3.16) may be determined by
employing procedures outlined in Clements[l).

It is possible to present the analysis in a more compact form if the expressions for the
temperature, displacement and stress are cast into an alternative form. Suppose the upper
half-space L is occupied by a material with constants A~, c~, At., L~, C/, N~, f3~ and the
lower half-space R by a material with constants for which the superscript R is attached. Define

Hence

(AfI +T
LAt>4>(Z) =ct>(z) for z E L,

(Aft +TRAIDq,(z) ='!t(z) for z E R.

4>(z) = ELct>(z) for z E L,

4>(z) = ER'!t(z) for z E R,

(3.19)

(3.20)

(3.21)

(3.22)



124

where
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(3.23)

Then, from (3.2) and (3.7)

Also define

T £L¢'(ZI) + £L¢'(ZI) for z' E L,

T ::::: ER'IJ'I(ZI) + £R-qiI(ZI) for z' E R.

2: Lfu",t/Ja(z)::::: O;(z) for z E L
"

2: L~at/J",(z)= 8;(z) for z E R,
a

(3.24)

(3.25)

(3.26)

(3.27)

where the (Mz) and 8 i (z) are defined and analytic in Land R respectively. Stroh[7] has shown
that the matrix [~2"'] is non-singular and hence

t/J,,(z) = M~jflj(z) for z E L,

t/J,,(z)::::: M~j8j(z) for z E R,

where

2:L~M~:::::~ IL~M~:::::~
" "

Hence, in (3.15) and (3.16)

+ (l~ fJ -l3tr)£L¢I(z') for Za' Z' E L,

O'~ =2: L~aM ~,,8j.(za) +I [::aM ~"elAz",) + (N ~ - f3 ~)ER'IJ"(Z')
'" "

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

4. TEMPERATURE FIELD

The heat flux -Pat a point across the surface with outward normal n = (nh n2, 0) is given by

(4.1)

Hence, from (3.23) to (3.25) it follows that the flux will be continuous across the plane Xl =0
outside the cut from XI = - a to Xl::::: a if

(4.2)



or

where

Thus, if we put
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lim 4>(z) = cI>+(XI), lim cI>(z) = cI>-(XI)'
x2....o+ X2....o-

4>"(z) - 'Ir"(z) = A(z) for z E L,

'I'''(z) - <I>"(z) = A(z) for z E R,
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(4.3)

(4.4)

(4.5)

where A(z) is analytic in the whole plane cut along (- a, a) then eqn (4.3) is identically satisfied.
Similarly, the temperature will be continuous across the bonded interface if

EL4>'(z) - ER'Ir'(z) = H(Z) for z E L,

ER'I"(z) - EL<I>'(z) = H(Z) for z E R.

Differentiating (4.6) and (4.7) and substituting from (4.4) and (4.5)

(EL - ER )4>"(z) = H'(Z) - ERA(z) for z E L,

(E R
- EL)<I>"(z) = H'(Z) - ERA(z) for z E R.

Hence

cI>"(z) = (EL - ERrl[H'(Z) - ERA(z)] for z E L,

<I>"(z) = (ER - EL)-I[H'(Z) - ERA(z)] for z E R.

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

Now the heat flux is specified over both faces of the cut and hence, from (3.24), (3.25), (4.1),
(4.4), (4.5), (4.10) and (4.11) it follows that

(EL - ER)-I[H'+(Xt) - ERA+(Xt)] +(ER - EL)-t[H'-(XI) - ERA-(XI)] = - !(XI) for IXII < a. (4.12)

(ER - EL)-I[H'-(Xt) - ERA-(XI)] +(EL- ERrt[H'+(X\) - ERA+(XI)]

+A-(Xt) - A+(XI) = - !(Xt) for IXII < a, (4.13)

where !(Xt) is the specified heat flux which is assumed to be the same on both faces of the
crack. Subtraction of (4.13) from (4.12) yields

(4.14)

and hence the function A(z) is analytic in the whole plane. Furthermore since the temperature
field must tend to zero as Izl-+ 00 it follows that A(z) is identically zero. Hence (4.12) and (4.13)
reduce to

or

(4.16)

where

(4.17)
SS Vol. 19. No. 2~
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The solution to this Hilbert problem is
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where

x(Z) = (Z - a)m-I(Z + arm
1

m = 27Ti log 11

(4.18)

(4.19)

(4.20)

where we select the branch of x(z) such that Zx(z)-+ 1 as Izl-+oo and choose the argument of 11
to lie between 0 and 27T.

Having obtained the H'(Z) from (4.18) the <P"(z) may be obtained from (4.10), (4.11).
Equations (4.4), (4.5) and (4.14) then provide ~"(z). The complete temperature and flux fields
may then be evaluated from (3.24), (3.25) and (4.1).

5. THE DISPLACEMENT AND STRESS FIELDS

The displacement across X2 = 0 for Ixil > awill be continuous if

or

where

Hence if we put

B~ = ~ Ar"M;j,
"

B~ = ~ A~M~j.
"

where the functions fk(z) are analytic in the whole plane cut along (-a, a) then eqn (5.2) is
satisfied identically. Similarly the stress will be continuous across the bonded interface if

n;{z) - e;{z) +(N ~ -13 f0E L <p'(z) - (N ~ - 13 ~)ER~'(Z) = Aj(x) for z E L, (5.5)

~;{z)-fi;{z)+(N~-l3f0ER'It'(z)-(N~-I3~)EL<t>'(z) = Aj(z) for z E R, (5.6)

where the functions Aj(z) are analytic in the whole plane cut along (- a, a).

Let

pkL(Z) = C/EL<p(z) - E/ER~(Z) for z E L, (5.7)

pkR(Z) = C/ER'It(z) - E/ELif>(z) for z E R, (5.8)

QjL(Z) = (N ~ -13 ~)EL<p'(Z) - (N ~ - 13~) ER~'(Z) for z E L, (5.9)

QiR(Z) =(N~-l3r0ER'It'(z)-(N~-l3r0EL<t>'(z) for z E R. (5.10)

Hence from (5.5) and (5.6)

e;{z) = n;{z) + Qr(z) - Aj(z) for z E L, (5.1I)
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8:{z) = O;(z) - QjR(Z) +~j(z) for z E R.

Hence differentiating (5.3) and (5.4) and substituting from (5.11) and (5.12)
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(5.12)

(B~-B~)n;{z)-B~QjL(Z)+P~'(Z)=rk(z)-B:j~j(z) for z E L, (5.13)

(B~-Bij)O~z)-B~Qt(z)+P~'(z)=rk(z)-B~~j(z) for z E R. (5.14)

Hence

n:{z) =C/k{fjJz) - B~~j(z)}+ Cik{B~Q8z) - pt'(z)} for z E L, (5.15)

O:<z) =- Ci/c{rjJz) - B~~I(z)} - CiIc{B~QjR(Z) - P~/(Z)} for z E R, (5.16)

where

(5.17)

where Sid is the Kronecker delta. Use of (5.15) and (5.16) permits the boundary condition (2.3)
to be written in the form

where

dj(x\):; - Pi(X\) - Cik{B~QjL+(X\) - pt'+(x\)} + Ci/c{B~QjR-(XI) - P~/-(Xt)}

- (Nh- ~ f-:z)E L4)/+(X\) - eN f2 - ~ f2)EL cP'-(xt). (5.19)

Also use of (5.11), (5.12), (5.15), (5.16) and (3.34) permits the boundary condition (2.4) to be
written in the form

where

(5.21)

Use of (5.9) and (5.10) in (5.21) shows that

(5.22)

and hence subtraction of (5.20) from (5.18) yields

(5.23)

and ~(z) is analytic in the whole plane. Furthermore ~(z)-+O as Izl-+oo and hence ~(z) is
identically zero. Equations (5.19) and (5.20) thus reduce to

(5.24)

Multiplying by constants Rj which are yet to be determined and summing over i it follows that

(5.25)

The Ri are chosen such that
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(5.26)

where the Sk and A are yet to be determined. Elimination of the Sk provides

These equations have a non-trivial solution if

(5.27)

(5.28)

which is a cubic in A with roots Ay ("I = 1,2,3); the corresponding values of Rj and Sj obtained
from (5.27) and (5.26) will be denoted by Ryi and Soyj. Equation (5.25) may now be written

The solution to this Hilbert problem is

S f Ir ) - X,(z) fa R=ti8;(x\) dX I f _
"k ""Z - 2' X+()( _ ) or "1- 1,2,3,m -a y XI Xl Z

where

X-y(z) =(z - at-I(z + ar",

1
n = -2. log A-y,

71'1

(5.29)

(5.30)

(5.31)

where we select the branch of X-y(z) such that zX-y(z)~ 1 as Izl~oo and choose the argument of
A'f to lie between 0 and 21T. Equation (5.30) provides

(5.32)

where

Having obtained the f!c(z) from (5.32) it is possible to substitute back into (5.13) and (5.14) to
obtain O;(z) and then (5.3) and (5.4) then yield aj(z). The displacement and stress throughout
the bonded material may then be obtained from (3.31) to (3.34).

6 STRESS NEAR THE CRACK TIP

In this section the nature of the stress singularities near the crack tip is considered. Suppose
the flux over the crack faces is constant and equal to to. Then eqn (4.18) may be integrated to
yield

- f (EL
- ER

)
H'(Z) = (~ _ e2""") {I - [(2m - 1)a + z]x(z)}.

Hence

_/ (EL_E R )
H(Z) 0 {z - (z - a)lt1(z + a)-m+l}

(I - eZ""") .

where m is given by (4.20).
From (5.21), (5.7) to (5.10), (4.8) to (4.11), (4.4) and (4.5) it follows that

(6.1)

(6.2)

(6.3)
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where
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Use of (6.2) in (6.3) provides

L -R L -R

g,'(Xt) = - P,'(XI) ME - E )(hj + kj)xt +ME - E ) [h. + k- e(-m+1)2".i]x +(x ) (6.6)
(l - e 2".",,) (l - e 2".mJ) J' It,

where

(6.7)

If the applied tractions are constant then Pi(XI) = tj (constant) and (6.6) and (6.7) may be
substituted into (5.23) which, upon integration, yields

where

{

2'7Ti [~{ ( ) 2 2 2( )2 21]'f
a ~+(x\)dXt = (l_e2",(n-m+i~ Xy(Z)- 2azn-m +Z + a n-m -aJ 1 nt'm

La x~ (Xt)(X\ - z) ( ), z-a
2az +(Z2- a110g z+a if n = m. (6.9)

The stress in the bonded material is given by linear combinations of the analytic functions
rk(z) and hence (6.8) and (6.9) provide the relevant information about the nature of the stress
singularities at the crack tip. Note first that the type of stress singularity at the crack tip is given
by the functions Xy(z) for 'Y = 1, 2, 3 and these functions are the same regardless of the
presence or magnitude of the applied heat flux. Hence the comments and calculations made
about the stress singularities for some particular anisotropic elastic materials in Clements [6] are
also pertinant to the thermoelastic case.

In the case when the two half-spaces consist of the same anisotropic material it follows
from (3.23) and (4.17) that IL =-1 so that m =0/2). Also, in this case, it follows from (5.17) that
ql has zero real part so that Cjl = - Cjl' Hence when the half-spaces are the same (6.4) and (6.5)
in conjunction with (5.17) provide

=0.

Thus, in this case, the last terms in (6.6) and (6.8) are zero and the stress field induced by the
constant heat flux in the absence of applied tractions may be obtained by taking the gj(x\) in
(6.6) in the form

If the half-spaces are different then the stress field induced by the constant heat flux in the
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absence of applied tractions is given by putting ti = 0 in (6.8) and then substituting the resulting
rk(z) in the relevant expressions in order to obtain the stresses.

7. SUMMARY

Complex variable techniques have been employed to solve the problem of determining the
flux and stress fields round a cut along the joint between two dissimilar anisotropic half-spaces.
A closed form solution has been obtained for the case of constant flux and tractions over the
crack faces. The analysis indicates that the nature of singularities in the stress field at the crack
tips is unaltered by the presence of an applied heat flux over the crack faces. The introduction
of the heat flux simply modifies the coefficients of the singularities.
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